
Occurrence, Source, and Human Infection Potential of 
Cryptosporidium and Enterocytozoon bieneusi in Drinking 
Source Water in Shanghai, China, during a Pig Carcass Disposal 
Incident

Yue Hu†, Yaoyu Feng*,†, Chengchen Huang†, and Lihua Xiao*,§

†State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental 
Engineering, East China University of Science and Technology, Shanghai 200237, China

§Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging 
and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 
30333, United States

Abstract

In March 2013, thousands of domestic pig carcasses were found floating in the Huangpu River, a 

drinking source water in Shanghai, China. To investigate the impact of the pig carcass incident on 

microbial water quality, 178 river water samples were collected from the upper Huangpu River 

from March 2013 to March 2014. Samples were concentrated by calcium carbonate flocculation 

and examined for host-adapted Cryptosporidium and Enterocytozoon bieneusi by ploymerase 

chain reaction (PCR). Positive PCR products were sequenced to determine Cryptosporidium 
species and E. bieneusi genotypes. A total of 67 (37.6%) and 56 (31.5%) samples were PCR-

positive for Cryptosporidium and E. bieneusi, respectively. The occurrence rates of 

Cryptosporidium and E. bieneusi in March 2013 (83.3%; 41.7%) and May 2013 (73.5%; 44.1%) 

were significantly higher than rates in later sampling times. Among the 13 Cryptosporidium 
species/genotypes identified, C. andersoni and C. suis were the most common species, being found 

in 38 and 27 samples, respectively. Seventeen E. bieneusi genotypes were found, belonging to 11 

established genotypes (EbpC, EbpA, D, CS-8, PtEb IX, Peru 8, Peru 11, PigEBITS4, EbpB, G, O) 

and six new ones (RWSH1 to RWSH6), most of which belonged to pig-adapted Groups 1d and 1e. 

EbpC was the most common genotype, being found in 37 samples. The distribution of 

Cryptosporidium species and E. bieneusi genotypes suggest that dead pigs contributed 

significantly to Cryptosporidium and E. bieneusi contamination in the Huangpu River. Although 

most Cryptosporidium species found in river water were not major human pathogens, the majority 

of E. bieneusi genotypes detected were endemic in China. Data from this study should be useful in 

the development of strategies in addressing future contamination events in drinking water supplies.
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Graphical abstract

INTRODUCTION

Cryptosporidium spp. and Enterocytozoon bieneusi are significant causes of diarrhea and 

enteric diseases (cryptosporidiosis and microsporidiosis) in humans and animals.1,2 The 

environmentally resistant oocysts (from Cryptosporidium spp.) and spores (from E. 
bieneusi) shed in feces have been frequently detected in water,3–5 and epidemiological and 

environmental studies have identified consuming contaminated water as an important risk 

factor for cryptosporidiosis and microsporidiosis in humans.6,7 Currently, complete removal 

and inactivation of Cryptosporidium oocysts and E. bieneusi spores are difficult to achieve 

during conventional water treatment.8,9 Therefore, these enteric pathogens represent a 

significant challenge to public health and drinking water authorities, especially in 

developing countries due to their common occurrence and insufficient removal during 

drinking water treatment.10,11 Like in many industrialized nations, Cryptosporidium is one 

of the two pathogens included in the Standard for Drinking Water Quality in China.12 In 

addition, both Cryptosporidium and microsporidia are category B biodefense agents defined 

by the National Institutes of Health, USA.13

The standard method for the identification of Cryptosporidium oocysts in water is the United 

States Environmental Protect Agency Method 1622 and its equivalents in other countries,14 

which provide a quantitative assessment of Cryptosporidium oocysts in water samples. 

However, this method cannot differentiate species of Cryptosporidium, thus cannot assess 

the public health significance of oocysts in water. Unlike Method 1622, PCR-based 

techniques can differentiate human-infective Cryptosporidium species from those that infect 

only animals. Likewise, phylogenetic analysis of ribosomal internal transcribed spacer (ITS) 

sequences has revealed the existence of host adaptation in E. bieneusi genotypes, with 

parasites from specific hosts forming different groups. These characteristics make it possible 

to assess the sources and human infection potential of pathogens in water using molecular 

diagnostic tools.5,15,16

In March 2013, more than 16 000 pig carcasses that had been dumped in Jiaxing, Zhejiang 

Province reached Shanghai via the upper Huangpu River, which has long been utilized as a 

major drinking source water in Shanghai, China.17 Pigs are commonly infected with 
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Cryptosporidium suis and Cryptosporidium scrofarum, although several other 

Cryptosporidium species/genotypes such as C. felis, C. hominis, C. meleagridis, C. muris, C. 
parvum, C. tyzzeri, C. andersoni, Cryptosporidium sp. Eire w65.5, and Cryptosporidium rat 

genotype I are occasionally present.18–21 Likewise, the majority of E. bieneusi genotypes 

identified in pigs belong to subgroups 1d and 1e in Group 1, which appear to be pig-adapted. 

Nevertheless, both common Cryptosporidium species in pigs, C. suis and C. scrofarum, have 

been found in humans, and some of the E. bieneusi genotypes in pigs, such as EbpA, EbpC, 

EbpD, PigEBITS5, and PigEBITS7, are well-known human pathogens.22–26 Thus, the pig 

carcasses in the Huangpu River can potentially present a major public health problem 

despite the initial assurance to the general public on its minimum human health threat by 

various local authorities.

In this study, we aimed to (i) assess the contribution of the pig carcass incident to the 

contamination of Cryptosporidium and E. bieneusi in the Huangpu River and (ii) evaluate 

the human infection potential of Cryptosporidium and E. bieneusi during the environmental 

contamination.

MATERIALS AND METHODS

Sampling Sites

The Huangpu River has long been utilized as an important water source in Shanghai. It has 

been providing 30% of the drinking water for approximately 20% of Shanghai residents 

since a new reservoir with water from the Yangtze River was put in full use in 2011. The 

water in the Huangpu River comes from a river network (Figure 1). Among different 

upstream tributaries, the two main ones, Yuanxiejing and Maogang, were affected by pig 

carcasses most, and contribute approximately 25% and 15% of input into the Huangpu 

River. These two upstreams originate from Zhejiang Province and flow through agricultural 

areas (livestock and poultry farms) and suburbs of Shanghai. Eleven sampling sites were 

selected along the upper Huangpu River in this study, all affected by the pig carcass disposal 

incident. Eight of the sites were along the two tributaries (Sites 1–8), whereas three 

remaining sites were located along the main stream of the Huangpu River (Sites 9–11; 

Figure 1). Among the latter, Site 10 was near the water intake for one of the drinking water 

treatment plants in Shanghai, whereas Site 11 was downstream of the pig carcass disposal 

incident and within the Shanghai city proper. Carcass salvage, widely reported in news 

media, occurred mostly at Sites 4 and 8.

Sample Collection and Processing

A total of 178 river water samples were collected from the 11 sites at five time points 

(March, May, and October of 2013 and January and March of 2014). At each time, 36 water 

samples were collected, except for May 2013 when 34 samples were collected. Clean plastic 

containers (10 L) were used for collection of water approximately 20 cm below the surface 

near the edge of the river. Pathogens in the 10 L water samples were concentrated by 

calcium carbonate flocculation as previously described.27 The concentrates were stored at 

−80 °C prior to DNA extraction.
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DNA Extraction and Molecular Analysis

Genomic DNA was extracted from 0.5 mL of sample concentrates using the FastDNA SPIN 

Kit for Soil (MP Biomedicals, Santa Ana, CA) and eluted in 100 μL of reagent-grade water 

as described previously.28 DNA was stored at −20 °C until being analyzed by nested PCR 

(see below) five times for each genetic target, using 2 μL of the extraction DNA in PCR. The 

secondary PCR products were examined by 1.5% agarose gel electrophoresis. Positive PCR 

products were sequenced on an ABI 3130 sequencer (Applied Biosystems, Foster City, CA).

Cryptosporidium Detection and Genotyping

An approximately 587 bp fragment of the small-subunit (SSU) rRNA gene was amplified by 

nested PCR as previously described.29 Cryptosporidium species present were differentiated 

by DNA sequence analysis. Cryptosporidium parvum and C. hominis in these samples were 

further subtyped by PCR and sequence analysis of an ~400 bp fragment of the 60 kDa 

glycoprotein (gp60).30 A new PCR with better amplification efficiency for C. meleagridis 
was used in subtyping C. meleagridis, which amplified an ~955 bp fragment of the gp60 

gene.31 The established subtype nomenclature was used to classify gp60 subtypes.

Detection and Genotyping of E. bieneusi

To detect E. bieneusi, an ~392 bp fragment of the ITS was amplified by nested PCR as 

previously described.32 Genotypes of E. bieneusi were determined by sequence analysis of 

the secondary PCR products and named according to the established nomenclature.33 To 

assess the host source of the genotypes found, a neighbor-joining analysis of ITS sequences 

obtained was conducted using genetic distances calculated by the Kimura 2-parameter 

model implemented in Mega 6.0 (http://www.megasoftware.net/).

Statistical Analysis

Data were analyzed using SPSS 19.0 for Windows (SPSS Inc., Chicago, USA). The χ2 test 

was used to compare the difference in pathogen occurrence among different sampling dates 

and sites. Differences were considered significant when p < 0.05.

Nucleotide Sequence Accession Numbers

Unique nucleotide sequences generated from this study were deposited in the GenBank 

under accession numbers KM496311–KM496316.

RESULTS

Occurrence of Cryptosporidium spp. and E. bieneusi in Raw Water

Of the 178 river water samples analyzed, 67 (37.6%) and 56 (31.5%) were PCR-positive for 

Cryptosporidium and E. bieneusi, respectively (Table 1). For Cryptosporidium, occurrence 

rates in March 2013 (30/36; 83.3%) and May 2013 (25/34; 73.5%) were significant higher (p 
< 0.05) than those in October 2013 (2/36; 5.5%), January 2014 (5/36; 13.9%) and March 

2014 (5/36; 13.9%). The same trend was also observed in the occurrence of E. bieneusi; 
15/36 (41.7%), 15/34 (44.1%), 6/36 (16.7%), 9/36 (25.0%) and 11/36 (30.5%) samples were 

positive in March 2013, May 2013, October 2013, January 2014, and March 2014, 
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respectively. The difference in E. bieneusi occurrence among five sampling time points, 

however, was insignificant (p > 0.05).

By site, nine of the 11 sites (except for Sites 2 and 9) were positive for Cryptosporidium in 

March 2013, all with occurrence rates >66.6%. In May 2013, ten of the 11 sites (except for 

Site 11) were positive, mostly with occurrence rates >66.6%. At other sampling time, only 

2–4 sites were positive for Cryptosporidium, with much lower occurrence rates (Figure 2). 

For E. bieneusi, nine of the 11 sites (except for Sites 2 and 9) were positive in March 2013, 

whereas eight of the 11 sites (except for Sites 3, 9 and 10) were positive in May 2013. In 

contrast, only 2–6 sites were positive for E. bieneusi at other sampling time points (Figure 

2). Overall, sites with higher Cryptosporidium occurrence also had higher E. bieneusi 
occurrence (25/72 or 34.7% versus 27/72 or 37.5% at four sites along the Yuanxiejing River; 

28/62 or 45.2% versus 27/62 or 43.5% at four sites along the Maogang River; 3/44 or 6.8% 

versus 13/44 or 29.5% at three sites along the mainstream of the Huangpu River).

Cryptosporidium Species and Subtypes

Altogether, 13 Cryptosporidium species/genotypes were found in river water samples, 

including C. andersoni, C. suis, C. baileyi, C. scrofarum, C. meleagridis, C. parvum, C. 
hominis, C. ryanae, C. fragile, C. cuniculus, rat genotype IV, avian genotype II, and avian 

genotype III. The most common species were C. andersoni and C. suis, being found in 38 

and 27 water samples, respectively. Cryptosporidium baileyi, C. scrofarum, C. meleagridis, 

C. parvum, and C. hominis were found in 16, 8, 4, 3, and 2 water samples, respectively. The 

remaining Cryptosporidium species or genotypes each occurred in only a single water 

sample. By site, C. andersoni and C. suis were also the most common species, being found 

at all sites (Table 2). The frequent detection of the two species occurred mostly during and 

shortly after the pig carcass incident (Table 1). Afterward, they were only occasionally 

detected in water samples taken at the 11 sites.

Further subtyping of positive samples of C. hominis, C. parvum, C. cuniculus, and C. 
meleagridis at the gp60 locus identified IaA18R4 subtype of C. hominis (1), IIdA19G1 of C. 
parvum (1), VbA20 of C. cuniculus (1), and IIIbA24G1 of C. meleagridis (1). All the 

subtypes were found only during the pig carcass incident (March 2013).

Enterocytozoon bieneusi Genotypes

A total of 17 E. bieneusi ITS genotypes were identified in this study, including 11 known 

ones (EbpC, EbpA, D, CS-8, PtEb IX, Peru 8, Peru 11, PigEBITS4, EbpB, G, and O) and six 

new ones (RWSH1 to RWSH6). EbpC was the most common genotype, being found in 37 

samples. Genotypes EbpA, D, CS-8 and PtEb IX were found in 7, 7, 6, and 4 samples, 

respectively. The remaining genotypes, Peru 8, Peru 11, PigEBITS4, EbpB, G, and O, and 

six new genotypes were each observed in only one sample (Table 1). By site, EbpC was also 

the most common genotype (Table 2), being found at all sites except for one (Site 9 in the 

mainstream). The frequency of EbpC detection, however, was much lower in samples taken 

after the pig carcass incident (16/108 or 14.8%) that those taken during or shortly after the 

incident (21/70 or 30.0%; p < 0.05; Table 1).
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Phylogenetic Relationship among E. bieneusi Genotypes

Neighbor-joining analysis of the ITS sequences revealed that most of the E. bieneusi 
genotypes found in this study belonged to zoonotic Group 1, except for the PtEb IX, which 

was divergent from all other E. bieneusi genotype groups and was used as an outgroup to 

root the neighbor-joining tree (Figure 3). Within Group 1, pigEBITS4, G, O and CS-8 and 

RWSH2 formed subgroup 1d together with EbpC, and the new genotypes (RWSH1, 

RWSH3, RWSH4, RWSH5, and RWSH6) formed subgroup 1e together with EbpA, EbpB, 

and EbpD. The remaining known genotypes, including D, Peru 8, and Peru 11, belonged to 

subgroup 1a (Figure 3).

DISCUSSION

In this study we examined the contamination of the upper Huangpu River by 

Cryptosporidium and E. bieneusi after the pig carcass disposal incident. We found that 

37.6% of the 178 river water samples were positive for Cryptosporidium and 31.5% were 

positive for E. bieneusi over a 1 year study period. Although the overall occurrence of 

Cryptosporidium in this study is similar to the one (28%) in a previous study of the Huangpu 

River water in Shanghai,34 occurrence rates of Cryptosporidium varied significantly among 

the five sampling time points (p < 0.05), with the highest rate (83.3%) being observed in 

March 2013. Likewise, the occurrence of E. bieneusi was also the highest during the pig 

carcass incident (March 2013, 41.7%) and shortly after (May 2013, 44.1%). These rates 

were significantly higher than occurrence rates of Cryptosporidium spp. and E. bieneusi in 

river water in most other areas.3–5,35,36 The frequent detection of both parasites concurred 

with the pig carcasses incident which took place during March 2013. Carcasses of thousands 

of pigs were discarded upstream in Jiaxing (60 miles southwest of Shanghai) and were 

found floating in the Huangpu River, probably because the relaxed control of the disposal of 

dead pigs. The cleanup operation was complete at the end of the month. Cryptosporidium 
and E. bieneusi from the dead pigs might have led to the high occurrence of both parasites in 

the Huangpu River during the event, despite the assurance of minimum impacts on water 

quality by the local water utility (http://www.popsci.com/science/article/2013-03/can-you-

really-still-drink-water-shanghai). Cryptosporidium and E. bieneusi occurrence was still 

maintained at a relatively high level two months after the pig carcass scandal (73.5% and 

44.1% in May 2013, respectively). The pathogen occurrence decreased significantly 

subsequently to rates more compatible to rivers in other areas,3–5,35,36 as stricter policy on 

pig carcass disposal was implemented by Jiaxing and other local authorities upstream of the 

Huangpu River.

Molecular identification demonstrates that the majority of the Cryptosporidium found in 

river water samples appear to be derived from farm animals, especially pigs and cattle. In 

this study, C. andersoni was one of the dominant species, as demonstrated previously in a 

study conducted in the same area.34 Similar to this study, a predominance of C. andersoni 
was also found in the Three Gorges Reservoir in China,37 and in other studies in 

industrialized nations.38–42 Cryptosporidium andersoni is the most common 

Cryptosporidium sp. in adult cattle in China.43 Several other common bovine 

Cryptosporidium spp. were absent or detected only occasionally in this study, such as C. 
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parvum in calves less than 4 weeks of age, and C. ryanae and C. bovis in older calves. Thus, 

the data from this study confirm that adult cattle are important contamination sources for 

Cryptosporidium sp.

The second most commonly detected Cryptosporidium species in the study area, especially 

during the pig carcass incident, was C. suis, which is a dominant species in pigs. The high 

level of detection suggested that pigs were an important contamination source in the study 

area. This is supported by the common occurrence of another porcine Cryptosporidium 
species, C. scrofarum, in eight river samples. It is known that C. suis shedding continues for 

a longer duration than C. scrofarum shedding, and older pigs frequently have mixed 

infection of both parasites.18,44,45 Although both porcine species were identified in a small 

number of river water samples in southern-eastern China,46 the high occurrence of them in 

this study indicated that the floating pig carcasses likely contributed significantly to 

Cryptosporidium contamination in March and May 2013. Previously, it was shown that both 

C. suis and C. scrofarum were prevalent in pigs from the Yangtze River Delta, China, 

including the region in this study.47–49 The continued presence of C. andersoni, C. suis, and 

Cryptosporidium species from birds (C. baileyi, C. meleagridis, and avian genotype III) after 

the pig carcass incident suggests that cattle, pig and poultry farms are major contributors to 

background Cryptosporidium contamination in the Huangpu River, despite the fact that the 

drainage basin is heavily populated by humans.

Results of E. bieneusi genotyping support the role of the pig carcass incident in pathogen 

contamination in the Huangpu River. Most of the known and all novel E. bieneusi genotypes 

in the Huangpu River belong to genotype Groups 1d and 1e, except for genotypes D, Peru 8, 

and Peru 11, which belong to Group 1a, and PtEb IX, which belongs to the outlier of 

common E. bieneusi genotype groups (Figure 3). The latter were only found in 7, 1, 1, and 4 

samples, respectively. Groups 1d and 1e genotypes are known to preferentially infect pigs.
26,50–53 The most common genotype in this study, EbpC, is the most prevalent genotype 

identified in pigs in China,26,54 and has also been widely reported in domestic pigs in Japan, 

Germany, Czech Republic, and Switzerland.51,55 Surprisingly, Group 2 E. bieneusi 
genotypes, which are almost exclusively found in ruminants, are absent in the Huangpu 

River water samples. This is possibly because Group 2 genotypes are shed at low intensity, 

thus are not often detected in surface water, as reported recently in a study of microsporidia 

in surface water in Spain.36

Despite the assurance of minimum public health impact of the floating pig carcasses by the 

local authorities in the general news media, most of the pig-derived E. bieneusi genotypes 

are known human pathogens in China. For example, the dominant E. bieneusi genotype in 

water samples during the pig carcass incident, EbpC, is also the dominant E. bieneusi 
genotype in HIV-positive and HIV-negative adults in rural areas in Henan54 and has been 

found in children56,57 and several nonhuman primate species in China.58,59 Several other E. 
bieneusi genotypes found in water samples in this study, such as D, EbpA, EbpD, Peru 8, 

and Peru 11, have also been found in humans in China.54,56 Although these E. bieneusi 
genotypes can infect humans, the low prevalence of C. hominis in river water samples in this 

study indicated that humans were not a major source for E. bieneusi contamination during 

the pig carcass incident.
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In contrast, the common finding of C. suis and C. scrofarum in the Huangpu River water 

samples during the pig carcass incident might only represent a modest public health threat. 

Although both Cryptosporidium species are known human pathogens, they have been found 

in only a few human cases.54,60–62 This is also the case with the bovine-originated C. 
andersoni, which has also been found in only a few human cases.61,63–65 In a recent study, 

C. andersoni was identified as the dominant Cryptosporidium species in diarrheic patients in 

Shanghai,66 but the validity of this observation has been questioned.67 Some other less 

common Cryptosporidium species in water samples in this study, such as C. hominis, C. 
parvum, and C. meleagridis, are more significant human-pathogenic Cryptosporidium spp.1

In conclusion, an increased occurrence of Cryptosporidium and E. bieneusi has been 

detected in the Huangpu River after the pig carcass incident, and results of Cryptosporidium 
and E. bieneusi genotyping support the dominant porcine-origin of both pathogens. As the 

dominant E. bieneusi genotype detected is a common human pathogen in China, the public 

health significance of the floating pig carcasses probably has been underestimated. Thus, 

further studies are needed to assess the occurrence of other human pathogens after the 

incident, allowing a full evaluation of its public health and environmental impacts. Only 

clear regulations and strict control of disposal of dead animals can prevent future 

occurrences of environmental contamination affecting human health.
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Figure 1. 
Sampling sites in the upper Huangpu River in Shanghai, China.
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Figure 2. 
Spatial distribution of Cryptosporidium and Enterocytozoon bieneusi at different locations 

of the Huangpu River since the pig carcass disposal incident. The percentage of positive 

samples is shown on the y axis.
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Figure 3. 
Phylogenetic relationship of Enterocytozoon bieneusi genotypes identified in this study and 

other genotypes previously deposited in GenBank as inferred by a neighbor-joining analysis 

of ITS sequences based on genetic distances calculated by the Kimura 2-parameter model. 

Bootstrap values greater than 50% from 1000 replicates are shown on nodes. Genotypes 

with “△” are known genotypes found in raw water samples; the novel genotypes in this 

study are indicated by “▲”.
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